Gestión de lo multidisciplinario en la proyectación sustentable

Autores/as

  • Guillermo Canale Universidad de Buenos Aires, Argentina

Palabras clave:

Sustentabilidad, Riesgo, Arquitectura, Diseño Industrial, Ingeniería Verde

Resumen

Durante muchos años el tratamiento de las cuestiones ambientales y sociales en las Ingeniería, la Arquitectura y el Diseño, se ha caracterizado por una enorme diversidad conceptual y metodológica. Cuestiones similares y aún idénticas son tratadas en los distintos ámbitos de manera aislada, con escaso enfoque multidisciplinario.

Esta investigación busca los fundamentos teóricos para una gestión de la sustentabilidad en las disciplinas proyectuales que remita a las raíces conceptuales desde las cuales sea posible trazar enfoques comunes y campos de trabajo interdisciplinario.

Apoyándonos en los Principios de la Ingeniería Verde y la Gestión del Riesgo, se exploran aspectos comunes que propician el aprendizaje mutuo desde el Diseño Inherentemente más Seguro propuesto por Trevor Kletz hasta una variedad de propuestas de la Arquitectura Sustentable, el Ecodiseño y Diseño para la Sustentabilidad (D4S).

 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Guillermo Canale, Universidad de Buenos Aires, Argentina

Universidad de Buenos Aires, Argentina. Ingeniero Químico, DIQ FI UNLP. Investigador asociado FADU-UBA. Durante su desarrollo profesional ha combinado la docencia (grado y posgrado), asesoramientos e investigación en cuestiones asociadas al ecodiseño, diseño para la sustentabilidad (D4S) y el vínculo entre cadenas globales de valor y la metodología para la aplicación del D4S. En el ámbito industrial, es consultor especializado en seguridad de procesos (prevención de accidentes mayores) en las industrias de petróleo, gas, petroquímica, minería, pulpa y papel y otras, dictando seminarios en Argentina, Chile, Perú, Colombia y otros países de América Latina. 

Citas

Abraham, M., & Nguyen, M. (2003). Green Engineering: Defining the Principles. Results from the Sandestin Conference (233-236). Environmental Progress 22 (4).

Anastas, P.T. (2003). Design through the 12 principles of Green Engineering. Environmental Science and Technology, 94.

Anastas, P.Z. (2003). Design Through the 12 Principles of Green Engineering. American Chemical Society - environmental science & technology - March 1, 2003, 95-101.

Anastas, P., Wood-Black, F., Masciangioli, T., & McGowan, E.A.E. (2007). Exploring Opportunities in Green Chemistry and Engineering Education: A Workshop Summary to the Chemical Sciences Roundtable. NY: Chemical Sciences Roundtable - National Academies Press.

Beccari, B. (2016). A comparative Analylis of Disaster, Risk. Vulnerability and Resilience Composite Indicators. PLOS Currents Disasters, 1-58.

Birkmann, J. (2006). Measuring Vulnerability to Natural Disasters - Towards Disaster-resilient societies. Tokio: United Nations University Press.

Birkmann, J., Cardona, O., & Carreño, M.A. (2013). Framing vulnerability, risk and societal responses: the MOVE framework. Natural Hazards 67, 193–211.

Byggeth, S.A. (2006). Handling trade-offs in Ecodesign tools for sustainable product development and procurement. Journal of Cleaner Production, 1420-1430.

Byggeth, S., & Hochschorner, E. (2006). Handling trade-offs in Ecodesign tools for sustainable development and procurement. Journal of Cleaner Production 14, 1420-1430.

Canale, G.  (04 de 07 de 2012). Indicadores para el Desempeño en Seguridad de Procesos -Experiencia en Talleres de divulgación. Primeras Jornadas Argentinas de Seguridad de Procesos - Ponencias. Buenos Aires: Asociación Argentina de Ingenieros Químicos.

Cardona, O.M. (2012). Determinants of risk: exposure and vulnerability. En C. V. Field, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (págs. 65-108). Cambridge, UK, and New York, NY, USA,: Cambridge University Press.

Cardona, O.M. (2004). The Need for Rethinking the Concepts of Vulnerability and Risk from a Holistic Perspective: A Necessary Review and Criticism for Effective Risk Management. Mapping vulnerability: Disasters, development and people, 17.

Edwards, A.R. (2005). The Sustainability Revolution. Portrait of a Paradigm shift. Gabriola Island. Canada: New Society Publishers.

Gallopín, G. (2006). Linkages between vulnerability, resilience, and adaptive capacity. Global Environmental Change, 293-303.

Habermas, J. (1991). Escritos sobre moralidad y eticidad. 1° Edición. Barcelona: Paidós. Pensamiento contemporáneo 17.

Habermas, J. (1985). Ética del discurso. Notas sobre un programa de fundamentación. 57-134. Conciencia moral y acción comunicativa,.

Hendershot, D. (2004). Section IV - Inherently Safer Design. In J. R. Phimister, & V. M. Bier, Accident Precursor Analysis and Management - Reducing Technological Risk Through Dilligence (pp. 103 - 117). Washington: National Academy Press.

Kletz, T. &. (2010). Process Plants. A Handbook for Inherently Safer Design 2nd Ed. New York: CRC Press.

Kletz, T.A. (1978). What you don´t have, can’t leak. Chemistry and Industry, 287-292.

Lancker, E.N. (2000). A policy scenario analysis of sustainable agricultural development options: a case study for Nepal. Impact Assessment and Project, 111 - 124.

Luttropp, C., & Lagerstedt, J. (2006). EcoDesign and The Ten Golden Rules: generic advice for merging environmental aspects into product development. Journal of Cleaner Production, 1396-1408.

McDonough, W. (1992). The Hannover Principles: Design for Sustainability. New York: William McDonough Architects.

McDonough, W., Braungart, M., & Anastas, P.T. (2003). Aplying the principles of Green Engineering to Cradle-to-Cradle Design. Environmental Science & Technology 37(23), 434A - 441A.

Meyer, T.A. (2016). Engineering Risk Management. 2nd.. Edition. Berlin: Walter de Gruyter GMBH.

OECD (2008). Guidance On Developing Safety Performance Indicators related to Chemical Accident Prevention. Paris: OECD Environmental Directorate.

Phimister, J.R., & Bier, V.M. (2004). Accident Precursor Analysis and Management. Reducing Technological Risk through Dilligence. Washington: National Academy of Engineering.

Ryn, S.V. (2007). Ecological Design. Tenth anniversary Edition. Washington: Island Press.

Singh, R.K. (2012). An overview of sustainability assessment methodologies. Ecological Indicators, 15, 281-299.

United Nations DESA. (2001). Indicators of Sustainable Development: Framework and Methodologies - 3rd Edition. New York: United Nations ISBN 978-92-1-104577-2.

United Nations (1996). Indicators of Sustainable Development: Framework and Methodologies. New York: United Nations Dept. for Policy Coordination & Sustainable Development.

Vallero, D.A. (2008). Sustainable Design: The Science of Sustainability and Green Engineering. New Jersey: John Wiley and Sons Inc.

Vezzoli, C.A. (2010). Design for Environmental Sustainability. London: Springer - Verlag.

Wasley, J. (2005). Reflections on the lessons of the Chemically Sensitive. En S. &. Guy, Sustainable Architectures: Critical Explorations of Green Building Practices. NY: Spon Press.

Descargas

Publicado

2018-12-21

Cómo citar

Canale, G. (2018). Gestión de lo multidisciplinario en la proyectación sustentable. Investigación + Acción, (21), 75–95. Recuperado a partir de https://revistasfaud.mdp.edu.ar/ia/article/view/268

Artículos similares

<< < 3 4 5 6 7 8 9 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.